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Abstract- Cervical cancer is the second most common 
malignancy among women worldwide, if it is detected in early 
stage, cure rate is relatively high. Computer aided abnormality 
detection for cervical smear is developed to assist medical 
experts to handle the microscopy images, examine cell 
abnormalities and diagnose dyskaryosis. The microscopy 
images of cells in cervix uteri are stained by the tumor marker 
Ki-67, so that the abnormal nuclei present brown while normal 
ones are bluish. Segmentation is the most important and 
difficult task to calculate the ratio of abnormal nuclei to all 
nuclei. In order to achieve accurate segmentation of nuclei, we 
propose a multi-level segmentation approach for abnormality 
identification in microscopy images. First level segmentation 
aims to partition abnormal (stained) nuclei regions and all 
nuclei regions. Because of under-segmentation after first level 
segmentation, second level segmentation is applied to further 
partition the clustered nuclei. In order to classify touching 
regions of clustered nuclei and separate regions of single 
nucleus, relevant meaningful features are extracted from 
regions of interest. Consequently all the nuclei regions are 
separated and in conjunction with the abnormal nuclei regions 

in the first level segmentation, the abnormality i.e. ratio of 
abnormal nuclei to all nuclei is obtained. Experimental results 

indicate that our method achieved an accuracy of 93.55% and 
95.8% in term of abnormal nuclei and all nuclei respectively for 
identification of abnormalities. Our proposed method produces 

a satisfactory segmentation. 

I. INTRODUCTION 

C
ERVICAL cancer is the second most common 

malignancy among women worldwide, if it is detected in 

early stage, cure rate is relatively high. Pap smear, invented 

by Georgios Papanicoloau, is a screening procedure to 

diagnose pre-invasive and early invasive cancer [1]. The 

procedure involves taking a sample of cervical cells from a 

specific area on the cervix. The slide is viewed for the 

presence of abnormalities. Manual detection requires a high 

level of skill, and is labor intensive, exceptionally boring and 
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time consuming. Therefore, there is an increasing demand for 

computer aided abnormality detection which can analyze 

abnormalities in microscopy images accurately. 

Some researches on computer aided cervical cancer 

detection have been investigated. Bamford [2] used active 

contours for cervical cell nucleus segmentation. B.L. Luck et 

at. [3] developed a model in conjunction with anisotropic 

median-diffusion, Gaussian Markov random fields and a 

Bayesian framework for automatically segmenting nuclei in 

confocal reflectance images of cervical tissue. Instead of 

dealing with reflectance confocal images, Ref. [4] used 

colposcopy images of cervical cancer and proposed a 

methodology to evaluate temporal changes of tissue color. 

Ref. [5] applied Support Vector Machines in 

Fourier-Transform Infrared data to enhance and improve 

upon the standard Pap test. However, our work is different 

from theirs in which we use microscopy images for 

abnormalities. Ki-67 is a cellular proliferation marker used in 

numerous clinical or lab researchers. Based on research by 

Jeffers et al. [6], Ki-67 index is significantly higher in 

leiomyosarcomas than in benign leiomyomas. The same as 

our previous work in [7], the Pap smear slide from cervix was 

dyed by Ki-67 in order to assist identification of abnormality 

for uterine tumor detection. Consequently, abnormal nuclei 

were stained brown while normal nuclei are still bluish as 

shown in Fig. 1. 

Fig. I. Microscopy image of cervical tissue slide stained by Ki-67 with a 
resolution of 1200 * 1600 pixels. We observe abnormal nuclei are stained 
brown while normal nuclei are bluish. 



Segmentation plays an important and tough role in image 

processing due to the complexity and diversity of images. A 

number of automated methods on nuclei segmentation have 

been proposed, such as thresholding [8], watershed 

algorithm [9, 10] and active contour [2, 11]. Thresholding is 

widely used for segmentation tasks [12]. An algorithm based 

on thresholding in nuclei segmentation is proposed in [8]. 

However thresholding is easily affected by noise and uneven 

illumination. Watershed is another powerful tool in cell and 

nuclei segmentation. Yang et al. [10] proposed a novel 

marker-controlled watershed which can effectively segment 

clustered nuclei with less over segmentation. In Ref. [9], a 

mathematical morphology-based watershed algorithm is 

applied to segment clustered nuclei. In addition, active 

contour method is used in [2, 11]. F ok et al. [11] extracted 

boundaries of each axons based on active contour model in 

conjunction with a rough identification of all the axon centers 

by using elliptical Hough transform. 

Although the existing methods are reasonably successful 

for the tasks, relatively few studies focused on specific 

cervical tissue images. In this paper, we propose a multi-level 

segmentation approach for abnormality identification in 

microscopy images. The first level segmentation aims to 

partition abnormal nuclei regions and all nuclei regions. 

Whereas there are touching regions of clustered nuclei, 

second level segmentation is applied to further partition 

touching regions. Finally all the nuclei regions are separated. 

The ratio of abnormal nuclei to all nuclei is obtained by 

combining abnormal nuclei regions with all separated nuclei 

regions. 

The rest of this paper is organized as follows. Section II 

introduces the overview of the system. In Section III, our 

multi-level segmentation method is described. Experimental 

results on dataset are presented in Section IV. Finally Section 

V concludes the paper. 

II. SYSTEM OVERVIEW 

Fig. 2 illustrates an overview of our proposed multi-level 

segmentation approach. At first a powerful smoothing 

method anisotropic diffusion is applied in the original image 

for noise reduction. Then the first level segmentation is 

employed in order to partition abnormal nuclei and all the 

nuclei regions based on k-means clustering in L *a*b* color 

space. We find that under segmentation is predominant and 

over segmentation is rare because clustered nuclei are 

segmented as a touching region. In order to classify clustered 

nuclei and single nucleus, relevant meaningful features 

including solidity, intensity standard deviation and area are 

extracted from regions of interest. After classification of 

touching regions and separated regions, second level 

segmentation is applied in touching regions in order that all 

the clustered nuclei are separated. After separating all nuclei, 

combined with the abnormal nuclei information obtained in 
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the first level segmentation, abnormal nuclei are marked in 

the final segmented image. Finally, the ratio of abnormality is 

obtained. 
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Fig. 2. Overview of computer aided abnormality detection process 

III. METHOD 
Microscopy images are acquired from a specific area in 

the cervix uteri and stained with proliferation marker Ki-67. 

As illustrated in Fig. 1, what we observe are nuclei in cells 

and abnormal ones are marked brown, while normal ones are 

bluish. Note that each cell has only one nucleus, counting the 

cell number is corresponding to counting the nuclei number. 

A. Preprocessing 

At first a powerful enhancement method anisotropic 

diffusion is applied in original image. Anisotropic diffusion 

is a nonlinear, iterative process that smoothes images while 

maintaining edges [3, 13]. As the gradient has the highest 

value perpendicular to the edge and is dilated along the edge, 

we increase the smoothing function parallel to the edge and 

stop the smoothing perpendicular to the edge. Therefore, 

anisotropic diffusion effectively reduces noises while 

maintaining nuclei edges. 



(b) 

(c) (d) 
Fig. 3. First level segmentation. (a) Abnormal nuclei regions and (b) all nuclei regions using k-means clustering. (c) Edge information added to (b), (d) 
Convex hull of each region in (c). We observe in (d), most of the regions are separated regions, however, there are some clustered nuclei regions 
because of under-segmentation. 

B. First Level Segmentation 

Microscopy data from a color camera are digitized ROB 

images. It is more common to describe a color by ROB 

components on computers, but as human beings, we cannot 

distinguish each color from ROB representation. Unlike 

ROB, L *a*b* is designed to approximate human vision. 

L *a*b* color space which is also known as CIELAB or CIE 

L *a*b* can quantify these visual differences. In the three 

coordinates, L * represents the lightness of the color, a* 

indicates the position between red/magenta and green and b* 

indicates the position between yellow and blue. Thus, all of 

the color information is in the 'a*' and 'b*' layers. We 

perform k-means clustering in 'a*b*' space to classify 

abnormal nuclei regions and all nuclei regions based on the 

color information. We set k equals to 6 experimentally and 

obtain abnormal nuclei regions, all nuclei regions and 

background respectively. Fig. 3(a) and (b) shows abnormal 

nuclei regions and all nuclei regions. We average centers of 

each training image as six clustering centers for classification 
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for testing images. However some of the nuclei are not 

segmented completely as shown in Fig. 3(b), edge 

information and morphological operation are added in order 

to segment complete nuclei. Result is shown in Fig. 3(c). 

Convex hull of each region in ( c) is shown in (d). 

C. Touching Regions Classification 

We observe most of the regions are separated regions in 

Fig. 3(d), which means each region has only one 

nucleus. However, there are still some touching regions 

cannot be isolated in the first level segmentation. They need 

to be classified and further segmented. Note that the shape of 

nucleus is nearly convex. If the region shape is not convex, it 

is probably a touching region because of under-segmentation. 

We define solidity of each region as a meaningful feature, 

which is given by 

s(n) = a(n) 
earn) 

(1) 
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(I) (2) 
Fig. 4. Classification of touching nuclei regions. (I) Separated nuclei regions; (2) Touching nuclei regions. 

where a(n) and earn) are region area and convex hull area of 

the nIh region. Intuitively from (1), clustered nuclei regions 

have small solidity. 

Intensity standard deviation is another feature used to 

measure the average difference of the intensity from the 

mean. The nIh region intensity standard deviation takes the 

equation 

1 N O"(n) = - L (Ii - f.1)2 
N j;1 

(2) 

where N is the pixel number ofthe region, 1; is the intensity of 

each pixel, !1 is the mean intensity of the region. High a(n) 

indicates that the region intensities are spread out over a large 

range of values, i. e. it is probable that stained and normal 

nuclei coexist in the region. 

If the region with small solidity or high intensity standard 

deviation, it is probable a touching region. We also note that 

region area is also an important factor for classification. 

Regions with small areas should be single nucleus. Based on 

the meaningful features extracted from each region, we 

experimentally set thresholds of each feature for 

classification. In this way, the touching regions are identified 

for further segmentation. Results of classification are shown 

in Fig. 4. 

D. Second Level Segmentation 

Touching nuclei regions need to be further segmented. In 

each convex hull region, Otsu's algorithm to threshold the 

region is applied in order to split clustered nuclei. This 

method produces a satisfactory segmentation for the 

clustered nuclei whose intensity standard deviation is low. 

However, for clustered region in which abnormal and normal 

nuclei coexist, only abnormal nuclei can be segmented 

because the region with low intensity is regarded as 

background. Fig. 5 illustrates the different segmentation 

results using Otsu's algorithm in each convex hull region. 
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(a) 

(b) 
Fig. 5. Applying Otsu's algorithm in convex hull regions (a) with low 
intensity standard deviation, (b) with high intensity standard deviation. Left 
column is the convex regions; right column is the segmentation results. We 
observe in (a), two nuclei are segmented clearly; in (b), only nucleus with 
high intensity is segmented. 

In the case of Fig. 5(b), we apply condition erosion 

method in [10]. Condition erosion means eroding only when 

the size of the object is larger than the predefined threshold. 

Two erosion steps are applied which are coarse erosion and 

fine erosion. The rule is that first coarse erosion using coarse 

structures, then fine erosion using fine structures. 

Considering the shapes of nuclei are like ellipses, two 

structures are defined as shown in Fig. 6. 

We set two thresholds TI and T2 by experiment. Firstly 

erode iteratively with coarse structure until the size of objects 

is smaller than TI. Then apply fine erosion iteratively until 

the size of the objects is smaller than T2. Finally, all the 

touching nuclei regions are separate as shown in Fig. 7. Final 

segmented image is shown in Fig. 8. 
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Fig. 6. Erosion structures. (a) Fine structure. (b) Coarse structure. 

Fig. 7. Second level segmentation. 

t. • 
• •. _.. -.t· · 

.. ... .. •. .. '. ". , . . - . . 
, -. . .  . • • • •  

, 
, . - . . . . . . . ... .. 

, . .- �- . 
' . ... .. . , - , ,. . .,. . � -
. .. \ . . �.� .. ' .. � tI.' • - . ' : ' • ••••• 

Fig. 8. Final segmented image. 

E. Abnormality Identification 

Combined with the abnormal nuclei information got in the 

first level (Fig. 3(a)), abnormal nuclei are marked in the final 

segmented nuclei image. We define abnormality by (3) 

b I· abnormal nuclei 
a norma It y = -----

all nuclei 
(3) 

Note that the abnormality is the ratio of abnormal nuclei to 

all nuclei. Fig. 9 presents the abnormality detection result. In 
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this image, N represents normal nuclei, A represents 

abnormal nuclei. The abnormality is 41.5%. 
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Fig. 9. Final automatic abnormality detection results. N represents normal 
nuclei; A represents abnormal nuclei. The abnormality is 41.5%. 

I. EXPERIMENTAL RESULTS 

Our dataset has 10 images with resolution of 1200 * 1600 

pixels. There are around 120� 180 nuclei in each image, 1674 

nuclei in total. We randomly choose five images as training 

images, others as testing images. We evaluate our method 

using abnormal nuclei accuracy and nuclei accuracy by (4). 

b I detected as abnormal nuclei 
a norma accuracy = ----------

abnormal nuclei 

I . detected as nuclei 
nuc el accuracy = 

all nuclei 

(4) 

Equation (4) indicates the detection accuracy in terms of 

abnormal nuclei and all nuclei respectively. Our method 

achieves abnormal nuclei accuracy 93.55% and nuclei 

accuracy 95.8%. Experimental results demonstrate our 

method is capable of detecting most of the nuclei and 

abnormal nuclei. It provides important diagnosis information 

effectively. 

II. CONCLUSIONS 

Computer aided abnormality detection in cervical tissue 

provides a basis in early diagnosis of cervical cancer. In the 

paper, a multi-level segmentation approach for abnormality 

detection of microscopy images in the cervix uteri is 

proposed. The method is composed of two level 

segmentations. The first level segmentation is used to 

segment abnormal nuclei regions and all nuclei regions. 

However, under-segmentation exists in all nuclei regions 

because of clustered nuclei. In order to c1assity touching 

nuclei and separated nucleus, meaningful features such as 

solidity, intensity standard deviation and area are extracted 

from regions of interest. Thresholds are set experimentally 

for classification. After c1assitying touching regions and 

separated regions, second level segmentation is performed in 



the touching regions in order to partition clustered nuclei into 

separated nucleus. Consequently all nuclei regions are 

separated nucleus. Combined with the abnormal information 

obtained in the first level segmentation, abnormality i. e. ratio 

of abnormal nuclei to all nuclei is achieved. The proposed 

method is tested on dataset consists of 10 images. The 

experimental results demonstrate our method produces a 

satisfactory segmentation. In the future we will focus on 

testing more cervical tissue data and comparing our method 

with state-of-the-art method. 
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